Powerful arrow Notation and Chained variant.

Note that all variables in this function are natural numbers. For PAN, the domain would be \(\mathbb{N}^3\). For the chained varaiant, we would have the domain as \(\mathbb{N}^n\) for \(n \in \mathbb{N}\)
In addition, PAN never uses multiple up arrows, which can help distinguish it from normal up arrow notation
Finally, if needed, PAN can be written with \(\uparrow_P\) for best legibility. \begin{eqnarray*} a \uparrow^n b = \left\{ \begin{array}{ll} {a}^b & (n = 1) \\ a & (n > 1, b = 1) \\ (a \uparrow^{n-1})^{b\uparrow^{n-1}b} (a \uparrow^n (b-1)) & (n > 1, b > 1) \end{array} \right. \end{eqnarray*}

Definition of the third case

The third case referes to recursion.
\(f^{a+1}(x) = f^{a}(f^{a}(x))\), for \(a\ge 0\)
\(f^{1}(x) = f(x)\) Termination case.
Note this is slightly different from normal recurstion, as the total iterations should be \(2^{a}\) In the above third case, we take \(f(x)\) to be \(a\uparrow^{n-1}(x)\). \(a \rightarrow b = a^{b}\)
Where the chained variant is as follows:
\(a \rightarrow b \rightarrow c = a\uparrow^cb = a\underbrace{\uparrow\ldots\uparrow}_cb\) (in which powerful-arrow notation is used) = a[c+2]b (in which the bracket notation of hyper operator is used)
\(a \rightarrow\ldots\rightarrow b \rightarrow 1 = a \rightarrow\ldots\rightarrow b\) — When last entry is 1, it will be ignored.
\(a \rightarrow\ldots\rightarrow b \rightarrow 1 \rightarrow c = a \rightarrow\ldots\rightarrow b\)
\(a \rightarrow\ldots\rightarrow b \rightarrow (c + 1) \rightarrow (d + 1) = a \rightarrow\ldots\rightarrow b \rightarrow (a \rightarrow\ldots\rightarrow b \rightarrow c \rightarrow (d + 1) ) \rightarrow d\)
\(a\rightarrow^1 b = a^b\) \(a\rightarrow^x b = f(a)\rightarrow^{x-1} f(a)\rightarrow^{x-1} f(a) \ldots \rightarrow^{x-1} f(a)\) where there are \(b\rightarrow^{x-1}b\) copies of \(f(a)\), where \(f(a) = a\uparrow^aa\) (refer above)
\(\#\rightarrow^x 1 = \#\) (here, \(\#\) denotes an arbitrarily long part of the chain before the relevant terms)
\(\#\rightarrow^x 1\rightarrow^y a = \#\)
\(\#\rightarrow^n a\rightarrow^1 b = \#\rightarrow^n (\#\rightarrow^n (a-1)\rightarrow^1 b)\rightarrow^1 (b-1)\)
\(\#\rightarrow^n a\rightarrow^x b = \#\rightarrow^n a\rightarrow^{x-1} a\rightarrow^{x-1} a \ldots \rightarrow^{x-1} a\) where there are \(b\) copies of \(a\)